Eigenvalue interlacing for first order differential systems with periodic 2 × 2 matrix potentials and quasi-periodic boundary conditions
نویسندگان
چکیده
منابع مشابه
Bifurcation for Second-Order Hamiltonian Systems with Periodic Boundary Conditions
Through variational methods, we study nonautonomous systems of second-order ordinary differential equations with periodic boundary conditions. First, we deal with a nonlinear system, depending on a function u, and prove that the set of bifurcation points for the solutions of the system is not σ-compact. Then, we deal with a linear system depending on a real parameter λ > 0 and on a function u, ...
متن کاملOn Second Order Differential Inclusions with Periodic Boundary Conditions
In this paper a fixed point theorem for condensing maps combined with upper and lower solutions are used to investigate the existence of solutions for second order differential inclusions with periodic boundary conditions.
متن کاملExistence Theorem for First Order Ordinary Functional Differential Equations with Periodic Boundary Conditions
متن کامل
First Order Impulsive Differential Inclusions with Periodic Conditions
In this paper, we present an impulsive version of Filippov's Theorem for the first-order nonresonance impulsive differential inclusion y (t) − λy(t) ∈ F (t, y(t)), a.e. characterize the jump of the solutions at impulse points t k (k = 1,. .. , m.). Then the relaxed problem is considered and a Filippov-Wasewski result is obtained. We also consider periodic solutions of the first order impulsive ...
متن کاملYukawa potentials in systems with partial periodic boundary conditions II : Lekner sums for quasi-two dimensional systems
Yukawa potentials may be long ranged when the Debye screening length is large. In computer simulations, such long ranged potentials have to be taken into account with convenient algorithms to avoid systematic bias in the sampling of the phase space. Recently, we have provided Ewald sums for quasi-two dimensional systems with Yukawa interaction potentials [M. Mazars, J. Chem. Phys., 126, 056101 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2018
ISSN: 1846-3886
DOI: 10.7153/oam-2018-12-30